Aqui os encontrareis todo concepto ejemplos desarrollos del tema

Buscar este blog

==BIENVENIDO==

Aqui podra ver e informarse sobre todo el caso de algebra y trignometria
se resume en poco para ser comprensivo
GRACIAS POR SU VISITA

24 nov 2020

Inecuaciones de primer grado


Inecuaciones de primer grado

 

Una inecuación de primer grado es una desigualdad en la que la potencia de variable es uno.

Ejemplos:

{x+2<6,\ \ } es una inecuación de primer grado.

{3(x-1)+2[2-x-3(x+2)]\ge 5(1-x)+3, \ \ } es una inecuación de primer grado.

{x+2<\displaystyle\frac{6}{x}, \ \ } no es una inecuación de primer grado porque la variable se encuentra en el denominador.

Resolución de una inecuación de primer grado paso a paso

Hallar los valores de {x} que satisfacen la inecuación

 

{2-\left[-2(x+1)-\displaystyle\frac{x-3}{2}\right] \le \displaystyle\frac{2x}{3}-\displaystyle\frac{5x-3}{12}+3x}

 

1 Eliminamos primero los paréntesis y después los corchetes

 

{\begin{array}{rcl}2-\left[-2(x+1)-\displaystyle\frac{x-3}{2}\right] & \le & \displaystyle\frac{2x}{3}-\displaystyle\frac{5x-3}{12}+3x \\ && \\ 2-\left[-2x-2-\displaystyle\frac{x-3}{2}\right] & \le & \displaystyle\frac{2x}{3}-\displaystyle\frac{5x-3}{12}+3x \\ && \\ 2+2x+2+\displaystyle\frac{x-3}{2} & \le & \displaystyle\frac{2x}{3}-\displaystyle\frac{5x-3}{12}+3x \end{array}}

 

2 Para eliminar los denominadores multiplicamos ambos lados de la inecuación por el mínimo común multiplo de los denominadores que aparecen en la inecuación, es decir, por {mcm(2,3,12)=12} y simplificamos las expresiones

 

{\begin{array}{rcl}(12)\left(2+2x+2+\displaystyle\frac{x-3}{2}\right) & \le & (12)\left(\displaystyle\frac{2x}{3}-\displaystyle\frac{5x-3}{12}+3x\right) \\ && \\ (12)4+(12)2x+(12)\displaystyle\frac{x-3}{2} & \le & (12)\displaystyle\frac{2x}{3}-(12)\displaystyle\frac{5x-3}{12}+(12)3x \\ && \\ 48 + 24x + 6(x-3) & \le & 4(2x)-(5x-3)+36x \\ && \\ 48 + 24x +6x - 18 & \le & 8x - 5x + 3 + 36x \\ && \\ 30 + 30x & \le & 3 +39x \end{array}}

 

3 Despejamos las {x} al lado izquierdo de la inecuación y las constantes al lado derecho. Para esto restamos {30} y {39x} en cada lado de la inecuación y simplificamos las expresiones

 

{\begin{array}{rcl}30 + 30x-(30)-(39x) & \le & 3 +39x -(30)-(39x) \\ && \\ -9x & \le & -27 \end{array}}

 

4 Para despejar {x} multiplicamos ambos lados de la inecuación por {-1/9}. Al multiplicar ambos lados por un número negativo, se cambia el sentido del símbolo de la inecuación

 

{\begin{array}{rcl}\left(\displaystyle\frac{-1}{9}\right)(-9x) & \ge & \left(\displaystyle\frac{-1}{9}\right)(-27) \\ && \\ x & \ge & 3 \end{array}}

 

5 También podemos expresar la solución de la inecuación en forma gráfica

 

Ejercicio solucion grafica de inecuacion

6 También podemos expresar la solución de la inecuación en forma de intervalo

 

{x \in [3, \infty)

 

Inecuaciones de segundo grado

Una inecuación de segundo grado es una inecuación en donde encontramos números, una variable (que llamaremos

) que esta vez la podemos encontrar multiplicándose a ella misma, y un símbolo de desigualdad..

Ejemplo

Un ejemplo de inecuación de segundo grado podría ser:

donde podemos observar que el término

es el termino cuadrático, característico de las inecuaciones de segundo grado, ya que si éste no estuviera, tendríamos una inecuación de primer grado.

Para resolver una inecuación de segundo grado usaremos un método compuesto por una serie de pasos a seguir.

Una de las cosas que se nos hará falta para este método es la fórmula de resolución de ecuaciones de segundo grado que recordamos a continuación:

Dada la ecuación de segundo grado:

, las soluciones vienen dadas por la fórmula: Puede ser que tengamos dos, una o ninguna solución en función del valor de (para más información consultar el tema de ecuaciones de segundo grado).


 

No hay comentarios.:

Publicar un comentario

Traductor